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A PROOF OF THE BIEEERBACH CONJECTURE FOR THE POURIH

CCEFFICIENT

By
P. R. Garabedian and M. Schiffer

CHAPTER T

INTRODUCTION

1. Formulation of the problem.

The family of schlicht analytic funcitions

(1.1) £f(z) =z« 3222 + 3323 + ahzh + eus

in the unit circle |z| <1 has been widely studied, and considerable interest
has focused on the Bieklerbach conjecture that Ianl <n , with equality holding

only for the Koebe function

x 7 ¢ 2eig22 + 3

T ooe L]

219 ig L
(1.2) (—1—-?—2;;2- e 1 23 + he31 Z

Bieberbach [2] showed that Ia.zi < 2 and Loewner [7] established the estimate

|a3| < 3 . The object of the present paper is to present a proof of the l
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THEQP®i. For the general class of schlicht functions (1.1) we have

(1.3) o | < ¥

with equality holding only for the function (1.2).

While our method does not seem appropriate for all values of the index n
it is our beiief that it conld be extended to include the next few coefficients,
although the significance of the results might not be commensurate wiil the
labor and effort required.

It is a consequence of the theory of normal families of analytic functions
that there exists an extremal function f£(z) Zfor the problem lahl = maximum .
Without loss of generality, we can assume that the fourin coefficient of this
function is positive, since otherwise we could replace f(z) by e-igf(zeie)
to obtain; for a suitable real value of © , a function with a), >0. In
view of the known value of the fourth coefficient of the function (1.2), we
can therefore assume that

(loll) ah > h .

We refer to the literature [3. 12, 13, 15] for the proof of

LEMMA 1.1. An extremal function f(z) for the problem |ahl = maximum with

ah > 0 'satisfies the ordinary differential equation

VS
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2
zzf'(z)a 1 . 3&2 . 2a3 + a,
n
£(2)° | £(z)°  £(2)° fiz)

(1.5)

z

2a 3a
“ 1 2 = P 3
_(;.5*:2.+_.2+3ah+3832+28.22 +z).

The interior of the unit circle |z| <1 is mapped by the extremal function

onto the exterior of a set cf anaiytic arcs in the w-plane which satisfy the

ordinary differential equation

2

2 3a 2a. + a 1

(1.6) 9;_,._&5+ 22+ 2 21<o .
W Lw w

The derivation of the differential eguations (1.5) and (1.6) is based
on the method of interior variations and it forms a decisive step in our
proof of (1.3). Analogous differential equations for the functions maximizing
the higher coefficients a, can be obtained with equal ease, and they are all
satisfied by the Koebe function (1.2);, with © =0 . _

It is easy to show [12, 1] that the extremal arcs satisfying (1.6) do
not fork in the finite part cf the w-plane, and we shall also use here the
known result [12] that only one extremal arc extends to the point at infinity,
although this follows independently from calculations in the present paper.

W: are thus able to formulate in simple terms

LEMMA 1.2. The extremal function f(z) maps the interior of the unit circle

onto the exterior of a single analytic slit. There is a real-valued analytic

function ¢(t} on the interval O <t <1 such that the coefficients a, s

a3 and a) of the extremai function f(z) bave the Loewner representation

e
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(1.7) a, =2 f eisﬁ(t)d‘b s
0
1
(1.8) ay = -2 f tezi?(t)dt + ag R
0
1 1 1
(1.9) 8y, = 2 f 2310 (Mg 4 [ f tle2i¢(t1)e%fr(£‘})dtldt2
0 0t =t,
+ 3a2a3 - 233 .

For the proof of Lemma 1.2 we refer to the literature [7, 10, 12, 16].
The formulas (1.7), (1.8), and (1.9) are due to Loewner {71, and the analyt-
icity of his function k(t) =<;‘¢(t) for the representation of the extremal
mapping f(z) is simply a consequence of the analyticity of the boundary slit
in the w-plane described in Lemma l.1l.

Our first innovation is |

LRMA 1.3. The coefficients a, and ay of the extremal function f(z)

o

satisfy two equations defined by the boundary value probl

(1.10) ;=-%k , f)=-%tk2 ,
(1.11) In {t2k3 - atk® + bk} =0
2a. + ag
(1.12) a(0) =2a, , b(0) = —43—— s
L
(1.13) a(l) =§ a, b(1l) = a5 s

[
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for two unknown functions a(t) and b(t) on the interval C <+t <1, where

k = k(t) = e p (v with y(t) real, and where the dot indicates differentia-

tion with respect to t .

The proof of Lemma 1.2 is based cn the extremal prouperty of the coefficient
8, represented by formulas {1.7), (1.8), and (1.9) in terms of the function
¢(t) . Loewner's parametric representation [7] of schlicht functions (1.1)
in the unit circle |z| < 1 shows that for any continuocus real-valued function
¢(t) the expressions (1.7), (1.8), and (1.9) define the first three non-
trivial coefficients of a schlicht function. Thus we can substitute for cp(t)
in these formulas an arbitrary expression of the form ¢(t) + rh(t) , where
r is any real number and h(t) is an arbitrary continuous real-valued
function on the interval 0 <t <1, and we will obtain a new fourth coef-
ficient ah(r) whose real part does not exceed 3 - It follows that for

r =0 we must have
(1.1h) (;1-; Re {ah(r)} =0

for every continuous real function h(t) . Explicit evaluation of the condition

(1.1k) yields

B
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1 1 1
(1.15) Im {6f 1231 (M (eyat + b f f tlezi‘p(tx)eif(tz)h(t2)dtldt
=t

2
0 0 t,=t,
1ty =ty 1
+ 8 f f el?(tt)tlezlf(tz)h(tl)dtzdtl- 12a, f 220y (eyat
o o 0
2
+ bay f P Eyarl =0 .
: )

Since h(t) is arbitrary, we deduce from (1.15) the identity

1
(1.16) Im{t2k(t)3 + % k(t) f tlk(tl)zdtl

t, =t

t, =t
Ly f k(t,)dt, - 2a,tk(t)? + aak(t)} =0 .

3
0
We set
t

(1.17) at) = 2a, -% f k(t,)dt,

0

1

2

(1.18) b(t) = a3+ 3 f tlk(tl)zdtl .

t

and we find that (1.10) follows by direct differentiation of (1.17) and (1.18),
while (1.11) is equivalent to (1.16), and (1.12) and (1.13) are consequences
of the loewner formulas (1.7) and (1.8). This proves the lemma. It is an

interesting unsolved problem to establish the main result (1.3) by showing

directly from Lemma 1.3 that a, = 2 and a3 =3,

.
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For the extremal function f(z) , we can express 3, in terms of a,

and by using

83

LEMMa 1.4. There is an angle ¥ such that

a ).
(1.19) ay = _214_ aY . aze-i‘l’ + -]32 et ¥

!
The derivative f (2) of the extremal function must have a zero on the
unit circle at the point which corresponds to the finite =nd of the analytic

slit in the w-plane bounding the extremal region. We denote this zero by
ei‘P

and we deduce from Lemma 1.1 that it must be a double zero of the

right-hand side of the differential equation (1.5). Thus

(1.20) -e-3i? + Zaze-zi? - 333e=iw + Bab - 3;391‘P + 232921‘}' = e3i‘_f' =0

3

and

(1.21) '}e-BilP - La 2Ly e-i\,’ - 3a ei‘P + la, bZi"P - BeBivl =0

e 3 032 3

+ 3a

2 3

Suptracting (1.20) from (1.21) and dividing through by 6e-iw s we obtain
(1.19). A comparison of (1.21) with (1.11) and (1.13) shows that ¥ = @(1} .
In addition to the results mentioned so far, we shall need the more

elcmentary

< e,

i dhf Wb
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LEMMA 105. The function
{(1.22) f(z-z)- . =z + i + b3 + b5 + eee
z 3 &5
z z
ii schlicht and
(1.23) Pq_z (2v- 1)| - 1| <1 .

This is the classical area theorem and hardly requires proof here. Note
that for the extremal mapping, (1.23) is actually an equality.

In order to exploit Lemma 1.5, we derive

LERVMMA 1.6. The coefficients a5 s 8g and aq of the extremal function £(z)

can be expressed in terms of the earlier coefficients 3, 5 84 and a), by the

formulas
(1.2k) ag = -gr aya) -;, 33 .
(1.25) ag = g a43) - %g agah - 73?' azag + -I.'?i a,ga3 - .!7'- ag + % a2§3 > ; 'a-2 5
(1.26) a, = ai - % 3,8q3) + % agah - -g— g + h—g agag - }72 32533
+l9 g ? 233 +§a333 *(%82;2 -r-;- 5

This lemma is obtained by substituting the power series (1.1) into the
differential equation (1.5) and equating the coefficients of corresponding

powers of 2z on both sides. Higher coefficients could be obtained by
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laborious calculations with the same procedure. Note that (1.2L) is the

elementary result due to Marty [8].

In order to reduce the calculations required to derive Lemma 1.6, we

use the expansion

2
EL 1 haz ha3 + 232 .

1 2
o2 - + +

1
v 2
z z

+ (aé - 2a2a5 - 3a3ah * hagah + Bazag - hagaB + ag)

+ (2a7 - hazaé - 6a3a5 + 8a§a5 - Saﬁ + 2ha2833h - léagah + hag

- 2ha§a§ + 22aga3 - Sag)z T

which is based on the theory of Faber polynomials. We substitute (1.27)
into the left-hand side of (1.5) and multiply out the resulting power series

in 2z to obtain

1 2a2 3a3 2
(1.28) Sttt 3ah + (5a5 - 2a2ah)z + (7a6 - 2a2aS - 6a33h + hazah

2 Z

4

3aza§ - haga3 + ag)z2 + (9a7 - 23236 - 63335 + hagas - 9aﬁ + 18a233ah

8agah + hag - 18a§a§ + 1hag33 - 3ag)23 + eee

282 383 i = 2 3
= ;§ ,.;Fr.* —_ Bah + 3a3z + 2a2z + 2z .
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The formulas (1.24), (1.25), and (1.26) are used in conjunction with

Lemma 1.5 to prove

LRMA 1.7. The coefficients a, , ay and a), of the extremal function f(z)

satisfy the inequality

_ 2 2 2

1 1 3 3 5 .3

(1.29) l: -Zaz '0'3583-'582 *S-Q»ah-53233+1-6a2
2
11 3 - 3 2 15 2 35 L
T35 2%, "0 %3 Y5337 16 %% Y138 &

81 181 3 213 5|2

9 2 1l — = 2
28 238, ~ B0 228 T 7 %2 T 1o 22%3 T 117 %223 Y 3oL %3 T 1997 22

1.2, a,a.a; - aja; + - RTINS~ (' 323
B %y T BF %2%3%), T 3360 2% T IB T 126 “2%2 T L %33 T TEO “293

2
13 3 k493 22 157 L 2087 6
T IIL 83 T T34 %283 * To7 3283 Y gLEis 22| ¢

To derive (1.29), we notice that (1.22) yields

0 s - = o | 8 .2 21 3 5 3
(1.30) by =-3a,, by “Z8 vfFay,bg T35 +iaEy-gpay
i = .1 32 3.2 Jd5 .2 3% L
(1.31) o 28 T %% *F3 15333 T 128 %

.1 3 3 2
(1.32) b9 -zag vy 8235 + n aBah -1Z %8, " 12 3233 + e 3233 - 758 ag 3
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3 3 3.2 15 2 15
87 + E 8286 + E 8385 + B— ah = R 8235 L2 -8- 82333h

";""v b o ;‘m
~~
(=
L d
W
\¥Y)
g
o
(=)
(=]
]
]
ST

5 3 3 3 105 22 315 L 231 6
3 * 33 828), * gL 383 7 535 %283 * 1oL %2 ¢

By recourse to tedious al gebra one can subsiitute the expressions (l.2k),

(1.25) and (1.26) into (1.30), (1.31), (1.32) and (1.33) in order to cktain
P

formulas for the coefficients bl’bB""’bll in terms of 8y 5 a4 and 3y

£ alone. These formulas, together with the first six terms of the inequality

(1.23), establish the lemma.

e The remaining inegqualities required for our analysis will be formulated as

) IFMMA 1.8. The coefficients 8y 5 a4 and a) satisfy the inequalities

| (1.3h) |82|<2 . |a3,§3 5

A
wiro

(1.35)

ah - 2a2a3 + ] a;

The estimates (L.3L4) follow in a familiar way [7] from Loewner's formulas
i (1.7) and (1.8). A proof of inequality (1.35) can be found in reference [9],
E tut for the sake of compieteness we sketch here an alternate demonstration.
It suffices to discuss the extremal problem
13 3

(1.36) Re {a,, - 2a2a3 + 35 a2} = maximum .

4

The extremal region for this problem is bounded by analytic arcs which satisfy

the differential equation

<
s e muise M




-] 2-
2
2 a a
2 2
(1'37) g-wz-—%i’-z*m _<_0 s
w W w

analogous to {1.6). Since the left-hand side of (1.37) is a perfect square,

we can integrate in an elementary fashion, and we find that along the extremal

arcs
(1.38) Re{2w- ye Ba2w- 1/2} =0 .

From this relation and the Schwarz principle of reflection it can be established
#hat the only extremal functions for (1.36) are the Koebe function (1.2) and

the mapping

(1.39) we (2324 2h" 13

Both functions give equality in (1.35) and hence the bound is correct.
We have now developed sufficient background to describe our proof of the
coniecture (1.3). In the next chapter we use the inequalities (1.L4) and (1.29)
a, - 2
hundredth. In the final chapter of the paper we show that if a, and a

to establish bounds on and |a3 - 3| which are of the order of a

3
are thus limited, then the equations (1.10), (1.11); (1.12) and (1.13) imply

that a, =2 and a, = 3. This is enough to prove (1.3). The first part

3
of the method amcunts to solving the differential equation (1.5) by recursion
in a power series. The second par%t consists in solving the non-linear boundary

value problem of Lemma 1.3 by perturbations in the neighborhood of the known

solution k=1.

P e
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CHAPTER II

PRELIMINARY ESTIMATION CF a, AND )

1. Application of the triangle inequality.

In this chapter we use the inequality (1.29) in order to restrict the
region of possible values of the coefficients a, and a3 of the extremal
function. As a first step we introduce the new variable A = a3 - g ag

and derive

(2.1) 1 3% a,

7 b9 5 .23
*756323h'37"2'112632"13)‘*3>"BazAl

1 = 11 5 3.9
+9m&23h7782-m8232 -maz'b(maz—mab)A

51 = . (e 2 1 2
'Ih'ﬁaz"*ﬁ?az"l + 1z a * 3285 223, * 18 * 1130 2222

23 - _ 283 6 13
128 3232 ~ 032 22

2 2
=2 1 L 2 = 2,2
*('5?632"‘5'%632 'IIZBTg""z))"37 7"%5632" c
This lemma is a direect consequence of the inequality (1.29) when we

substitute for a the value

3

e LA o
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(2.2) ay = )\+§a

Our aim in the present section will be to show from (2.1) that

close to 2 . We have

ILEMMA 2.2. The terms

(2.3) |b1|2 + 3|by 2 . g b5|2 <1

alone in {2.1) imply the estimates

(2.4) |a2| >1.67 |>\|5 TR
For the proof, we set

(2.5) Asqa » n=fAl

and we find by (1.4) and (2.1) that

1/2
(2.6) (b - 4% - 12 4

|8.2| is very

= 51/2(h - 1.5aL - .527) >0 .

¥e maximize the left-hand side of (2.6) with respect to L and find for L

-1/2
2L(k - A% - 12) = 51/211 5

whence
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. 2\1/2 2
L = /3 LN N , h-12-3L2=h-———7h'A .
(h*lsn\ L + 15A

Therefore A will satisfy the inequeality

1/2

1/2
(2.7) (55‘, +a)7 w-ay 43 >8 .

This relation is not fulfilled in the interval O <A< 1.67 , and thus the

bound (2.L) on |a2| is established. The bound onlhl is now obtained from

the estimate

(2.8) 3|)\| ¢ <lk- 22 <k - (1.67)2 = 1.2111 ,

and the lemma is proved.

LIMMA 2.3. Let a, = Aei“' ard rormalize the extremal functican f(z) so that

0 <L < /3 . Then

(2.9) 0<X< .22 .

The normalization is obtained by means of the substitutions f£(2) or

e 72619 , 0 =2 21/3 . By Lemma 2.2

1/2

8y, - L.5a, N - .53 | < (.2k222)? < g3

whence
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Ia - Sa3 < 2.113

I h . 2 =~ +
and
(2.10) |oin 3a < .60k
and (2.9) follows.
LEMMA 2.h. The terms

2 2 2 2

(2.11) lb1 + 3 b3 +5 b5 + 7 b7| <1

alone in (2.1) imply the estimates

(2.12) Ia2 >1.92 , |)\|f.32)4 .

We adopt again the notation (2.5) and in addition we set

& 3 1l 3
(e510) RS LR AR R VR

Aoplying the triangle inequality to (2.11), we find
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: 5 1/2 '
(2.18) (b -2%-3° - %) > (28)%/2 i36 b 332 alz’ ' 1% iy

1 3 3,2
+EaZ/A-T6.X*B-AI
2(28)1/2[§-A; cosd-%kh cos bt -1%12 cos 2« -%AH-T%LCOSQ

*g-Lz cos 29] 5

where A = L ej'g . We can set « =0 in (2.1h), since the right-hand side is

an increasing function of o« in the relevant interval O <o < .22 . Indeed,

we nave there, since A > 1.67 ,

b4

2 _.

-gA sino(*-gkhsinhoﬂ +

Also we find

Sn 20 3 % 3 212 3.2 3 _ 342 3
gL cosZO-ﬁLcose E(Lcose g) -B-L 0= gL -5 -

and hence

2 1/2

(2.15) (L - A° = LT 5‘,12

3 - 28)Y211.08 — oeareal - 22682 - 03

- .25aM - 375181 >0 .

o S 2 o ——— G
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We maximize the left-hand side of (2.15) snd find for M the worst value

1/2
w = (26007 - 7ab . 212?42
>
100 + 35A2
whence (2.15) yields

1/2 1/2

(2.16) (b - A% = 3L2) (100 + 3512)
- 212l - 1.875aY - .6 - Lsa® - 7512150

Maximjzing with respect to L2 gives for L

2
00
1 *35‘ _175 %
L -4 -3
or
2 _8 2.2
201 E o - 3
(2.17) " =z-34
There are two cases, according as
(2.18) ke =22
!
or
(2.19) Az':%g .

[PORRRS N——
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In the first case, (2.16) reduces to the inequality

h*2.§A2*.620 .

979 - 2LA + 1.875
This inequality is not fulfilled in the interval 1.67 <A < (?0/7)1/2 , and
thus by Lemma 2.2 the alternative (2.19) must prevail. But then L =0 is

the least favorable possibility and (2.16) yields

(2.20) [ - a2)(100 + 3522)/7172 - 2ha + 1,879 + bosa® + 620 .

1/2

In the interval (20/7) <A < 1.92 the relation (2.20) is not satisfied,

and this establishes the lower bound (2.12) on A . The upper bound (2.12)
on L follows again from our lower estimate on A and the inequality

31:2 <l - A2 « This proves the lemma.

LEMMA 2. . E_e_ have

(2.21) 0<xk<.0Lh , 0<1Ima,<.208 .

Using (2.3), we derive the inequality

3 2,1/2
ah e 05 a2| 5 3L + (08 = 02A ) f 1.2225 ’

whence sin 3K < 30563 and the lemma follows.
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=20
IFMMA 2.6. The terms
(2.22) |b1|2 5 3|b3|2 . Sib5|2 .7 b7‘2 . 9ib9l2 <1
alone in (2.1) imply the estimate
(2.23) |a2| >1.95 .

We treat first the case IO ~-77n1-5 7w/L , where again A =1 2® . mth

this hypothesis we have Re{a2 )\} <0, by Lemma 2.5, and hence vy (2.3)

1/2
(.8 -.20%)" >h-.5 .

This inequality is not satisfied in the interval 1.92 <A< 1.95 , and

therefore we can restrict ourselves in the remainder of the proof of Lemma 2.6

to the case |O -rri: w/h .

Since |)\i < .32k and A > 1.92, we have
Re 21-‘876 ag e (a, - L) - 598' el (ah - h))\)?_ o ,

and therefore by (2.1)

S —
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D)=

1/2 2 1
(2.2h) -.]-'3-(1-",‘1’} A2 - I% L2 - %Mz) :% cos X + 7—A cos 2o

-%%335\3 cos 2o - E]i%gﬁ,s cos ha\’-Re{%Ae-i“-~—311]€2-A3e2i°(>\+-i%A7\ —TAA }
%1A2 cos & +-—A cos 2K - %g—OB-AB cos 2 'EII%BAS cos L4 &

_ L{7 cos(8 -«) - 31 It cos(2% +8) + HS%O A cos @ - %AL cos® @ %AL}

%52 cos X *75 cos 2& -%AS cos 2 -E‘E‘EAS cos Lk -%ALz

-

= L{[?f cos e - % 3 cos 2 «+ %A]cos e - %AL 0052 fa

- [—blno( +%A3 sin 2o<]sin9} .

If sin 8 >0 ;, then sin(@ «X) >0, since |9 -1T|: /L , and we can use

the formula
E3 P
to derive the estimate
- 2 . M
sin 3K = (4 cos“x - l)S1no<§—3 s
«5OA

Using this inequality, the estimate M < .251 based on Lemma 2.L,and Lemma 2.5, i

we find the improved bound sine& < 024 and this yields in turn

10 o S et




22

. M
sin o < 06673 7
- A

?‘-‘v,'t{'-?‘,;\ga G ARSaty 5 i

when sin 8 > 0 . Also we find by completing the square that
81 2 9 3 51
‘t %AL cos 9-[7coso< ——ik cos 2« +m-A]Lcoso
-
b 14 9 51, _ 31 ,3
> - giil5 cos o g A - 7y A7 cos 2T,
I
! and hence (2.24) yields
) 2 2 1/2
1., _ A% _ 3% _ oM L7 ,2 1 153 ,3
) (2.25) 3(1 S il T) >7OA cosx-t,?A cos 2« 336‘ cos 2
| *
' . EIEJZ.;AS cos Lo - 35 AL - 6673[—3 33] ML
¢ 1 51

- ' [—cosx s —QA cos 20(]

.67124A2 cos K + .1L2BA cos 2 - .2733;13 cos 2K - .02&56};5 cos b X

v

= .723215;&1.2 - .L906144L

% 4 364286 - .27678@2 cos 2 x]2

since A > 1.92 . The right-hand side of (2.25) is an increasing function of o

in the relevant interval 0 < o< .10k , since

RS R R ettt R £




¥ o e = T
i - .
i
:
- |
; ~23- j
¢ i
- 67112 sin & - .2856 sin 2o + .5L668°> sin 2 ¢ + .09824a° sin b i
, |
i . . . I
! - 17298 <5 [1.2857 S22 + 361286 - .2767864° cos 2] > 0
|
] i
there. Hence we need only consider the case X =C . Furthermore, if we !
ﬁ assume A < 1.95 and use the inequality between arithmetic and geometric :
{ means, we obtain %
1 i,
‘ |
, .72321581% + .L9061GML < 1.4102712 + (.2L5308)(.102538)1° 3
! {
| !
| + '-%%g M2 < 1.9139(. 7512 + 1.2M%) . ,
1
: 2 _ 2 2 ;
! Thus we set 2N° = .75L° + 1.25M° and (2.25) yields {
f
. 1/2

+ 3.8276N° > 671ka% + 1288 - L2739

1 AL b b

1 1.2 2
E(I-HA -2N)

. 2
= .O?hSéAS - .17294{1.2657A" " + .36L286 - .276?8632 ] .

Jar S it

We maximize with respect tc N2 and find that the least favorable value is

PRSI SOy 2 v 9y

2
= A
N2 T h9621 - —8- .

a

Hence
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(2.26) 1.928L43 > 1.1&98751&2 + ,1L28a - .2733A3 - .ozhséns
2

- .1729A01..2857a71 + .36L286 - .2767868%] .

The final inequality (2.26) is not satisfied in thc interval 1.92 <A < 1.95 ,

and therefore the lemma is proved.

2. Estimation of imaginary parts.

Our later estimates will be simpler to derive if we expand the main

inequality (1.29) in terms of the differences between the coefficients a »

aq and ah’ and the conjectured values 2 , 3 and L . We have

(2.27) a2=2-5,a3=3-7,ab=b*€,

then
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(2.28)

235 e 3 0 e $0% 0 20+ 55
+7|33+-'7+—" %‘*'1&252 155.,1 %7%-32‘-1536*%5272-%%53*%51*'2
|2215 1; ‘ZI"? 5_0,7 e*—n—Sz 75‘;7 *%’?2*598'7"

- 22 5¢ -%53 %3527 11257{ 229 18133’( 1{;59625511 1:?71932 55|2

|5 RF . Dy, g B, 25T Sp sy B, s

55.2 12 13 35251 ¢3 179 ¢2= h93 ¢ 2
@ - g€ -5 Se + 2 ’l‘*'s'Too‘S S'q»: 3¢y - %33’71

239325—-95’i€ 1h815h 157 ¢3 h93512 23%53€

s 225° 1Y 13050 T

157 g,y , 2087¢5 2087 ¢6
" T792° T 53780 " #s12

This lemma is proved by direct substitution of the new variables Y , 7(

and € into the inequality (1.29).

LEMMA 2.8. In the notation (2.27), set

(2.29) 5=p-iP,7l=Q-iQ
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(2.30) 0<P<.078 , - .067<Q<.076.

For the proof we have by Lemma 2.7, using only the imaginary partscof

b3’b5 and b7,
(231) 1 - £ a2 > 3(- 3P + 34 + 2 poP)°
v5(-2P+3e v Brp-2@-2m-Bo%

3 15 15

+ (- 5P -2Q+

%PQ :—L%S-pP % P> - P3P pP3) = 3[.5Q - 1.5P(1 - Sp)]

+ 5[1.5Q(1 - .5p) - 1.5P(L - 2.5p + .5q + .625p° - .208333p°)]°
« 7[.3P(1 + 25p - 12.5q - 1.8333€ + 6.25pq - 6.25PQ - 21.875p>
+ 7.291666P% + 3.61158333p> - 3.6456333pP2) + 1.2¢(1 - 3.125p + .625q
+ .78125P° + .78125p9) 1% .
In order to estimate the coefficients which appear here, we use the inequality

(2.32) g+ bha<7Tp+ 2pa - %Py + 6,502 - 6.5p% + 1.08333p° - 3.26pp2

- 15 3 ll 15 15 2
G- F PP+ R+ - I R+ BEP - FP¥ - P Q

e 2

PRSH wraos
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which results from (1.35) when we make the substitutions (2.27) and (2.29).
We shall also need the inequalities
(2.33) €_>_0,p20, qQ9>2060 , P>0 ,

which follow from (1.lL), from Lemma 1.8, and from cur normalization of tue

extremal function. By Lemmas 2.5 and 2.6 we have
(2.3k) p <.0606 , P<.208 ,
and thus
1 - .5p > .9697 ,
1-2.5p+ .59 + .628p° - .20833%% > .81, ,

1+ 25p - 12.5q - 1.8333€ + 6.25pq - 6.25pQ - 21.875p>

7.291666P° + 3.6L58333p> - 3.6L58333pp2

+

1+ 30125p - 105625p2 - 13.02]P2 : 0’436 9

iv

l - 3.125p + 0625q + 078125P2 + 078125p2 : 0813 .

—— .
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After these preparations, we can proceed to apply (2.31) systematically in

order to prove the lemma. For Q <O we get
2 2 2
-0Lol > 3(.5Q)° + 5(1.45LQ)° > 11.32Q° ,

which establishes the lower bound (2.30) on Q . On the other hand, if

Q>0 and F > .6 , then

al 2 2 4

Obsh > 3(.3727Q)° + 7(1.05LQ)° > 8.19RQ° ,
while if Q >0 and P < .6Q , then
; - a2 2,2 2
0Lok > 5(1.5Q[.4 + p - .39 - .375p" + J125P"])° + 7(.9756Q)
r\\2 2 2
> 5(.570)% + 7(.97562)% > 8.2870% ,
by virtue of the inequality
q+p <lp + p?

resulting from (1.34). The upper bound (2.30) on Q follows from these
estimates.

To estimate P , we must again consider several different cases. If

Q<0 , then
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.obsh > 3(1.Lsi®)? « 5(1.261p)° > 2iip?

and there is no difficulty. If P <Q there is alsc no difficulty in view

of the bound on Q already established. If Q <P <1.3 we find
.0kgl > 3(.95h55P)2 + 7(.88126?)2 > 8.1698?2
and P < .,078 . Finally, in the case P > 1.3Q >0 we have
.olgl > 3(.5Q - 1.4sksp)? + 5(1.5Q - 1.2615P)% + 7(.1308P + .9756Q)2

1h.h233p2 - 21.L995PQ + 18.6625622

8.231h31>2 + 18.6625(Q - .576007?)2

8.23@°

v

and this serves to establish the bound (2.30) on P and the lemma.

o e i ffic] i
LEMMA 2.9 The increments qQ and € githe coe ients a3 and ah satlsfz

(2.35) 0<q<.l1é6 , 0< € <.h5 .

B Bt a1 Wbl
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These estimates follow from inegquality {2.32), which yields because of

Lemmas 2.6 and 2.8 the bound

€ * 3.8788q f ohh9h .

LIMMA 2.10. We have

(2.36) - .059 < .75Q - P < .0ko2 .
We set S = .75Q - P and we find from (2.31) that for S >0
i 1.019] \2 2 2
L0h9L > 5(1.939ks)” + 7(1.38)° > 30.6358° ,

and the upper bound on S is establishe’s If S <0 and -S> .343p,

then by (2.31)

.olgl > 3(.66666S - .75788P)° + 5(1.939LS + .66%12p)°

> 1. 3095°

and S > - .059 . On the other hand, when 0 >S > - .343P , then S > - .027

by Lemma 2.8, and this proves the lemma.
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We close this section with a remark which will turn cut to be useful
later. In applying formula (2.31), we have estimated the term 1 - .25A2 by
the number .O0L9L . If, instead, we make use of the fact that this term

cannot exceed p , our present calculations yield the final

LEMMA 2.11. Setting again S = .75Q - P , we have the inequalities

(2.37) P2 < .l23p , _Q.2 < .12% , s2

3. The discriminant condition.

In this section we develop a procedure based on Lemma l.L which yields

good bounds for q and € when a bound on p is known. We derive first

IEMMA 2.12. The angle Y satisfies

(2.38) 1.5€ + 3qcos¥V -2pcos2W¥W =« (1 -cosW)[(2 cos Y- 1)2 + 1]

+ (3Q - bP)sin¥ + UP(1 - cosW¥)sin ¥

L

(2.39) h(y) = - (%—é *-ij +£3‘-p cos?¥)sin ¥ + Q - 3P +-§-P(1 - cosoY)

where
(2.L0) (W) = (% - % cos’ Y 4 % cosB‘}')sin Y .

T S e maay
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Fcrmula (2.38) is obtained from (1.20) and formula (2.39) is obtained
from the imaginary part of (1.19) by replacing 28 5 ag and 8), by the new

variables p ,q, P, Q and £

LEVMMA 2.13. The angle ¥ lies in the interval

(2.41) - 122 < Y < ,087 .
From the real pert of (1.19) we find
B-Q-%p cos 3'P-%Psin3‘l’-%cos h\l’*gcos 2‘f’+-§cos 3y

=(brge-plosy

whence by Lemmas 2.6, 2.8 and 2.9
3 = 1.9069 < L.225 cos ¥

and |¥] <1.31 . Hence for ¥ >0 by (2.39)

N N

h(‘P)fQ-§P+§P§.O78 .

in view of Lemma 2.8. But in the interval +121 < Y <1.31 we find
h(¥) > .078 because of the definition (2.40). Thus ¥ < .121 and (2.39)

yields

DAL B L. XK A




h(¥) <Q - %P+ .03 <.056 .

By (2.40) we have h(Y¥) > .056 in the interval .087 < Y < .121 and hence
the upper bound (2.41) is established.

If Y<0, (2.39) and Lemma 2.10 give
h(Y¥) >Q -%P > - .0787 ,

and since h(Y) < - .0787 in the interval - 1,31 < Y < - .122 , the lemna

is proved.

LEMMA 2.1h. The quantities p , qQ , P, Q and ¢ satisfy the inequality

(2.42) 2€+3q-2p <3N -Lp)° .
For the proof of this lemma, we combine (2.38) and (2.39) to obtain

1.5€¢ + 3@ cos¥Y - 2p cos 2¥ = - (1 - cosW)[(2 cos ¥ - 1)2 + 1]

(3Q - kP + UP(1L - cosW) IR - P + kp(1 - cos3'4’)_]_
(2 -8 cos’W + 8 cosB‘«P) + (1.5€ + 2p + lLp cosB‘l’)

= 1:97(1 - cos¥) « (R - hP)? + .203(1 - cos¥)

2-8cosT + 8 cos ¥

tA

b

by virtue of Lemmas 2.3, 2.10 and 2.13. But

P R
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1 _ 1= Q- cos¥)cos®W
1-110032?' + L cos" ¥ 1-L cos°Y + L cos® ¥

< La12h(1 - cos¥) ,
and therefore
1.5¢ + 3q - 2p < (1 - cos¥)[- 1.97 + 3q + 2.062(.236)2 + .L186(.0075) ]
+ %(p - wp)? .

The lemma now follows, since the coefficient of (1 - cos¥) on the right

is negative.

LAMMA 2.15. We have

(2.h43) qQ<.05 , €<.l .

These bounds result immediately from Lemma 2.1l and the inequalities

(2.34) and (2.36).

L. Linearization.

In this section we refine our estimates of p,q, P, Q and € by
expanding the fundamental inequality (2.28) and examining the quadratic terms.

We have
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LR 2.16. The terms {2.22) alone in the ineguality (2.28) imply

(2.hk) p > 103.653;:2 - 30.291pg + 35‘.0!;«,3 + 13.777€ <3 33.55p€ + 32.803q€
+ 116.8899° - 120.39hPQ + 467952 + p[h1.995p° - 195.01pq - 5.100q" ]
« b.2k3g] » €l- 12.071p% - 121.179pq » 22.093¢° - 28.239€p + 3-885 €]
v €[~ 179.h59P% + 180.485pq - 32.84%7] « pl52.5426° + 95.328RQ - 5.375Q" )
« qf- b€k.27P° + 355.177PQ - 77.93%%] - 2?47.5&8;:!‘ + 279.4720%q - 17.k53°d"
- ss.l1€p + 98.59hep g + 165.h23¢pp° - 58.55heqP’ - 117.138€ PR
+ P2[271.0128° - L2h.o7heg « 15.625:21 + pol- 70.392P° + 170.1628Q
- 1461562 + 263.6kkp@’ + 17.k53¢°P% - 25h.32kpgRG
- nax(}8] %, [l 0250181 + 66 [Sy]+ 107318 e1 - 5 [8]%€® -

For each y> 1 we can write the coefficient b), in the form

b), =1y*qv vhr >

m— .

A

vty 2
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where Iy indicates terms cf degree cne, qv indicates terms of degree twc,
and h,, indicates terms of degree three or higher in the expanelion of b,
as a polynomial in J, )2 > I 3 ﬁ and €. In deriving {2.Lh), we use the

inequality

b, 2> 1A)% + zae{l,,a,,} + me(L,5,}

and we expand in all detail the quadratic and cubic terms Vvlz and
8e{1y Ev} « On the cther hand, we work ocut explicitly omly the largest

contributions from the term XRe {1959} , and we estimate the remaining terms

of higher degree throngh the ineguality

(2.k5) 1cae{(§ = "7 ’2935 }’ H‘Re!‘loé* 3 57 TG 23°

i 221 13 51 —
-E5 - &8 )} wre{(75 4 - 78 -0+ 27
= 2 - - 15 L

-Re- 53 - FIe P33 -H )}

> - max(|§] %, |7;|2){190 |12 + eh.s |oq)+ w07.3|8]e1 -5 [81% €2

in which terms of degree larger than four have been estimated by means of the

known bomd M| < .0988 .

i
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IR} 2.17. The quantities p , q , P and @ satisfy

(2.16) p > 100.653p° - 30.251pq » 35.0kq® - 156.2p° - £93.6p% + 93.0560°
- 101.810R + h1.68137 + min{G , S.777RQ) .

Qur first step in proving Lemma 2.17 is to show that the terms insolving €
on the right in inegquality (2.l14) are mon-negative and can therefore be
neglected. This follows from the set of estimates

13.777€% - 28.239p€ ? + 3.8859€% - 5151%€¢? >0 ,
32.803q € - 121.179pq € + 22.099q°€ + 58.5%kp%q€ - 58.59kP°q€ >0 ,
8.55p€ - 11.071p°€ - 55.1h1p € + 165.L23p%p € - 117.188FQp €
J1? 28
- 207.3 max(}d|° , PNk >0 ,
€125p - 175.h59p% + 180.L65Pq - 32.8u%°%] > €[25p - 120.32l8? - 55.136P°]1 > 0,
uhich depend strongly on Lemma 2.11. MNext we mote that by (2.34) and (2.43)

qlh6k.27P° - B9.1738Q + 77.93%°] + p2[70.392P° - 170.162PQ + 1hk.6150°]

< 23.4777° - 18.58LpQ + b.L28Q?

B v
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since the quadratic forms in P and Q which appear are positive-definite.

Also
95.328pPQ + P2[271.012P° - L2L.07hPQ + 1Lk.615Q%] - 25h.32kpaPQ
> min(C , 95.328pRQ)
and
52.9h2pp2 - 5.375pQ2 + 263.6hhqu2 + 17.h53q2P2 > - .32602 s
Finally, by the inequality between arithmetic and geometric means,
max( IJI 2 s l'qlz)[l90 'J' 2, 6h.6 |J72|]
< (0% + .12%) [2h6p? + 32.3(P? + Q2)]

N

f 2h6p + 30.26p3 + 036(P2 <+ Q2) >

since q < .85Lp by Lemmas 2.11 and 2.1Lh. Therefore the terms involving P

and Q on the right in (2.LL) exceed the quadratic form i
93.056P° - 101.810PQ + L1.681Q° + min(0 , 5.777PQ) - |

It remains tc estinate the terms in p and q . We find

e e e — -
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1.533P2q - S.IOOpq2 + h.2h3q3 >0 ,

279.).172p3q - 17.h53p2q2 >0 ,

L L

11.735p> - 196.5h3p°q - L93.5h8p" > - 156.2p° - L93.ép"

and thus Lemma 2.17 is established.

LEMMA 2.18. From the inequality (2.22) alone we have

2.47) p<.0109 , q<.0073 , €< .0lk6 , P < .0094 , - .0081 <Q < .01k1 .
By (2.L6) we find

b > g2.8275°

p > 94.106p° + [6.547p° - 30.291pq + 35.0Lq%] - 156.2p> - L93.6p
using the known estimate p < .0606 . Hence p < .01208 and therefore in turn
p >92.1p° ,
which establishes the upper bound (2.47) on p . We have

93.056P° - 101.81PQ + L1.6813° = 30.865P° + L1.681(Q - 1.2213P)°

= 13.833Q2 + 93.056(P - .5h7th)2 5
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and thus (2.L6) yields
2 i 2 o

13.833q2.5 p - 92.1kp° < .0027133 .

IA

The upper bounds (2.L47) on P and Q follow. TFor the lower bound on Q we

can use the estimate
k1.6819° < .0027133 ,

since only negative values of Q are relevant. To estimate q and €& , we
note that
93.086p° - 101.81PQ + L1.681Q% + min(0 , 5.777PQ) > 71.58%

whence by Lemma 2.17

2 1
71.;55 + p f m< .010% .
Lemma 2.1l now gives

1l.5€ + 3q<2p + BSzf .0218 ,

and tnis estimate suffices to complete the proof of Lemma 2.18.
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Thus far we have made no actual use of the formula (1.26) for the coef-
ficient a7 , and, indeed, we could finish the proof of the main theorem

without recourse to terms involving 37 . However, it is a simple matter to
improve our estimates at this stage by using (1.26), and we proceed to do so

in order to throw additional light on the inner workings of our method.

LEMMA 2.19. The complete inequality (2.28) yielgs

(2.48) p > 97.581p° + 202.35(q + .37685€ - .718617p)°

+ €[L9.9kp + 6.452€ 4+ 266.16p° - 193.031pq - 33.252q° - 25.188p€ + L.7h3q €
+ 3.835€ 2 - 269.829p> + 58.59Lp2q - 523.488P% + LS1.31%Q - 55.L72Q°
+ 809.1188pP2 - 58.55LqP% - 117.188pPQ] + P2[272.955 - 926.L02p - 1001.895q
- 308.575P% + 338.694PQ + 144.615Q% + 266.66hp2 + 2063.951pq + 17.h53q2]

- PQ[531.176 - 2387.998p - 592.236q + 2118.1L2p° + 25k.32Lpq]

+ Q2[317.100 - 756.084p - 186.018q - 1hh.615p2] - 615, 35hp3 + 921.731p2q
- 29&.6pq2 - 73. 386q3 + 219.687ph - 320.63p3q - 17.1453p2q2

- [.0028€2 + .0332p€ + 3.%77p° - 528.7p° + 20695.3ph] .
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quadratic and cubic terms on the rig

This lemma is proved in the same way that we proved Lemma 2.16.

The

ht in (2.48) are .btained by straight-

forward algebra, and higher degree terms which have not been worked out

explicitly are estimated by (2.45) and the inequaiity

21k 2 3
e 5 - BT - 30+ 7 -

> - max(|§ 1%, P 292k max(1§ 1%, ) = 175.7€ max(|S1,ImD + 18.1€7) .

ho3 =2
- 3’3‘35’?

lz93'5'

TdE 5o

29/6)(_ 5 o 1793 Q?

= 1L81TFL 3=
"393-5 6"67'}; ‘%‘217?.571

239 33 1%7'511- 208775 _ 2087 ;6)}

%77

Hence the total contribution of the terms not calculated explicitly exceeds

- max(]§ |° »iml 2y [6L6 maxr|"2,|~,,|2) + 283¢ max(|5|,pl|) + 23.1€%)

> - .0028€% - .0332p€ - 3.377p° + 528.7p> - 20695.3p" ,

since we have the estimate

nax(|§ P, |mP) <

based on Lemma 2.17.

L

.0723p - 5.66p° < .000117
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LEMMA 2.20. The Quantities p ,q , P, Q and € satisfy the inequality

“-‘.“.'.‘ﬁ”‘_!‘

(2.19) p > 9h.2p” + 255p - S01PQ + 0R? .

S —

To prove this lemma, we remark first that
(2.50) 202.35(q + .37685€ - .718617p)2 - 312.233p> + 868.983p°q
2 2 2 ”
= (202.35 - 604.622p)(q + +37685€ - .718617p)2 > 0 .
Thus when we subtract the quantity on the left in (2.50) from the right-hand
side of (2.48), we either improve or do not alter the inequality (2.48).
ATter the subtraction, the terms involving € which remain have a non-negative
sum and can be neglected, since by T.emma 2.17
1 [k9.9p + S.Lhe - 61.315p2 + 262.673pq - 33.252q2+ 60.678p€ + L.T7h3ge

+ 3.836€2 - 269.829p° + 58.59kp%q - 523.488P° + L51.313RQ - 55.4720°

+ 809.1188pP2 - f8.59th2 - 117.188pQ} >0 .

SN s A A A 1

sl 5




— - -

T

Ll

The terms of degree three or more in p and q alone which are left also

fo:m a non-negative contribution and can be neglected, since

225-579p3 - 52.7h8p2q * 310.022pq2 - 73.386q'3

= 201175.7ph - 320.63p7q - 17.h53p%q° >0 .

Thus the term in p2 on the right in (2.49) is all that remains, except for
terms involving P and Q . These terms in (2.48) are estimated to exceed

the quadratic form
255p° - S01PQ + 0%°
since
- 308.575P% + 338.69LPQ + 1U4.615Q% > - 7p
and since we have diminished the term in Q2 so generously that we are sure

to have neglected a pr=itive-definite form in P and Q . This proves the

lemma.

LEMMA 2.21. ghg gftimates

(2.51) p < .0107 , q < .0071 , € < .01k2 , P < .0075 , - .003 < Q < .0069 ,

|s| < .0036

i 50 o
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are satisfied.

The estimate (2.51) on p follows immediately from (2.L9). To obtain

the upper bounds on P and Q we complete the square in (2.49) to find

h7.9P2 P - 9h.2p2 < 002654

1A

56.52° <p - 9k.2p° < .00265L .

For the lower bound on Q we need consider only the case Q <0 , and hence

we have directly

3032 < .00265L

For $§ we find

20552 <p- 9li.2p° < .00265L

whence also

852*2pf§52-3 5

and the bounds on q and &€ follow by Lemma 2.14. This proves Lemma 2.21l.
We can now fomulate the principal lemma of this chapter, upon which the

remainder of the proof of (1.3) will be based. Using the inequalities (2.51),

we obtain
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LEMMA 2.22. The combinations of a, and a3 appearing in the boundary con-

ditions (3.12) and (1.13) satisfy

(2.52) 0<hefk - 2,} <02k , 0z n{2s,} <.015 ,

10 283 % & 2a, + a3y \
(2.53) 0 <Re 5- = < .019 , - .002 < ;[mt-—'B——} < .01u6 ,
(2.54) OfRe{%-%az} < ,01k3 OfIm{%az} < 01 ,
(2.55) 0<Re{3 - aB} < 0071 , - .003 <Im {aB} < .0069 .

Although it plays no part in the proof of the main theorem, the following
lemma, making explicit the bound we have obtained at this stage on a) > is

of interest.

LEMMA 2.23. From the discriminant condition (1.19) &nd the inequality (1.29)

hased on the area theorem (1.23) and the recursion formulas (1.2L), (1.25)

and (1.26), we get the bound

(2.56) loy,| < L.onk2

on the fourth coefficient of schiicht functions (1.1).
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CHAPTER IIX

IOCAL UNIQUENESS

l. The fundamental equations.

By means of a non-linear boundary value problem in ordinary differential
equations we developed ia Lemma 1.3 of Chapter I a set of equations for the
coefficients 3, and a, of the extremal function f(z) . We observe that

3
this set of conditions is indeed fulfilled in the case of the Koebe function

[5.0]
(3.1) f(z) = 2 n2" ,
n=l

for which we have a, =2, a3 = 3 and

(3.2) k(t)sl,a(t)Bh-%—t,b(t)ﬂ%g-%tz .

Our problem is to investigate whether there exist other solutions of the
same set of equations. It will be sinown in this chapter that when the values
a, and aq are sufficiently near to the values 2 and 3 , respectively,
these latter values are the only ones compatible with the above boundary
value problem. In corder to give this uniqueness procf, some formal prepara-
tion is necessary;

We put

(3.3) k=el®, a(t) = u(t) +iv(t) , b(t) = x(t) + iy(t) ,

s 94

v

Lo bR




Vi

—

b T SR R

,Y“w»'

Gl = o

it S

-L8-
and we bring the boundary value problem of Lemma 1.3 into the real form
' L ' 2
(3.4) u(t)*--j-cos¢ . x(t)=--§tcos2¢ ,
5 ORI '(¢) = - 2 ¢ sin 2
(3.5) v(t) =-zsing , y(t) =-3ts ?
(3.6) tzsinBQ-t(usin2¢+vcos 29 ) +xsinp+ycosp~0 ,
with the bBoundary conditions
G w@® =5u©@ ,  x() =3x(0 - § O - %),

(3.8) v =§v0) , ¥y =350 - Fu@w0) .

It will be useful to introduce the functions

(3.9) p(t) = 4% - 8e 4
and
(3.16)  U(t) = u(t) - b + 93- B R CRE T L

The polynomial (3.9) will occur frequently in our estimates; it is positive-
definite and attains its minimum 1/3 at t = 3/L . The functions (3.10)

represent the deviation of the solutions u(t) and x(t) from the corresponding

SR P
: L3
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known solutions (3.2). By means of the above notation, we can bring (3.6)

into the form

(3.11)  (sing)[p(t) + X{t) - 2tU(t) - 16(% t2 - t)sin’ £+ 1642 sin® —g
+ (1) sin? £ + 2tv(t) sin @ < (1) tan £ = (sv(8) - p()) .

We have further the differential equations

(3.12) y'(e) = % s.inz -? s X (%) =-13£ t sin’@ .

The structure of equations (3.11) and (3.12) indicates clearly the
estimation procedure to bte followed in our uniqueness proof. We will be

able to estimate most quantities easily if an estimate of the form
tain 2 £
(3.13) jsin 5| <4

with sufficiently small 5) is available. We shall make this assumption in

the following section and derive from it various conseguences.

2. Estimates EX means ﬁ f o

By (3.6) and Lemma 2.22

|tan @ (0)] = %—Ix O): < .00ks5 ,

i
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and hence either |@(0)| < .00L5 or |@(0) -¥r| < .00LS . In both cases

we deduce from (3.11) and Lemma 2.22 that
2.4]sin @ (t)]| < .0L

in the interval 0 <t <.l. Thus if |@(0) -¥r|< .0045 , we would have

cos @ (t) <0 in the interval 0 < t <.l, since p(t) is continuous. By

(1.7) this would imply Re {32} < 1.8 , which contradicts (2.52). Thus
|@(0)| < .00LS .

We take f in the interval .0l < f< 1 and we deduce that
N,
| sin —ﬂé&| < -{ .

Let next [0, T;] be the largest interval in 0 <t < 1/2 for which the

inequality (3.13) is still fulfilled. We deduce from (3.12) at once

TEMMA 3.1. !!2 have ln_ the interval O < t < T

1

(3.1l OfU(t)-U(O)f%—tfz , OfX(t)-X(O)f_%tzfz .

ng left-hand inequalities hold in the entire interval O < t < l.

From the differential equations (3.5) for v(t) and 'y(t') we infer

i b Y b -




LIMMA 3.2. We have in the interval 0 <t < T1

2

?t .

Wi n

L
(3.15) |v(t) - v() ] <=5pt , |y(t) -y} <
We utilize next the fact that (3.7) implies the boundary condition
U(l) = % U(0} « By (2.52), U(0) <O and, since U(t) increases monoton-
ically, we have the estimate

(3.16) u() <u(t) <5U0) , o<t=<1 .

We now rewrite (3.11) in the form

(3.17) F(+) sing =tv -y
witn
(3.18) F(t) = p(t) + X(0) + [X(t} - X(0)] - 2tu(t)

+ 16(t - % t%) sin® £ + 1612 sint £+ btu(s) sin® £

+ 2tv(0) sin ¢ - y(0) tan>-§-+ 2t{v(t) ~ v(0)] sin ¢ - [y(t) - y(0)] tan %; "

Using Lemmas 3.1 and 3.2, and (3.18), we obtain

0)' ;;3 80242 2
(3.19)  F(+) > p(t) - [X(0) | - 2t|v(0)| ¢ - %ﬁ‘f‘z’)ﬁﬂ? 3y Y T3 (hf t?)'m

SR




for t in the interval 0 <t < Tl « Since p(t) attains its minimum at

t = 3/L, this ylelds for 0 <t <T, the estimate

F(t) 3% - 1X(0)| - |v(0)| ¢ '(_llll'(‘?%l'l;’z'%fz -%(h-:z)ffﬁ )

Applying Lemma 2.22 and taking £ = 1/7 , we cbtain

LFIMMA 3.3. In the entire interval 0 <t < T1 in which

| (3.20) Isin £ |< &

holds, we have

(3.21) F(t) > 629 .

Thus far we have made estimates which are valid in an interval extending
to the right from t = 0 . However, since the boundary coaditions on

u(t) ;, v(t) , x(t) and y(t) yield as much informaticn at the point t =1

as thex do at t = 0 , we proceed to establish similar estimetes valid in
an interval extending to the left from t =1 .

From Lemma 2.13 and the identity @(1) =¥ , we know that |@ (1)] < .122 .
By (2.39), (2.40) and Lemma 2.21 we can imprcve this bound to obtain

|® (1) ] < .008 . sSince we take p in the interval 0l < @< 1, ws find

|sin :E%lli‘<-%; n

e s
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and we denote by ['r2 s 1] the largest interval in 1/2 <t <1 for which

the inequality (3.13) is still fulfilled. PFrom (3.5) we derive

LEMMA 3.L. We have in the interval T

catoth o A e U B A

<t.fl

(3.22) [v(t) - v(1)| <

wal &=

. 2 2
e(l-t) , |r(t) -y <51-tp .
We now replace (3.18) by the eguivalent formula

X(0) + {X(t) - X(0)] - 260(t) + 16(t - % t})stn? £

F(t) 3

[}
e}
~~

<t
~
-

2 . L

<+
o
N
>
7]
5

_; + Ltu(t) sin® ;;i + 2tv(1l) sin @

y(1) tan

~lq

+ 2t[v(t) - v(1)] sin @ - [y(t) - y(1)] tan —; s

and we are led to the estimate

W) 3% 2 - 8t «,l;l- | x(0) | -hfzmax(o y b --1311-,2)
2
9] 8 ,2, ¢+ 2 2 £
"2"’(1)”"0 ‘a‘%‘g‘)—%:;-g, t{1 - t) --3‘(1-t)m17§

in the interval T2 <t<1l. Weset f = 1/7 again and find that by

Lerma 2.22

F(t) > 3.307 - 8.0573t + 5.3945t% - max(o , 25726 +) > 208

Ak
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since the minimum of the quadratic on the right occurs at approximately

t+ = .,7L6807 . Thus we obtain

LEMMA 3.5. In the entire interval T, <t <1 in which {3.20) holds, we have

——

(3.23) F(t) > .298 .

3. Integration of the differential system.

Let us define a new function of t by
(3.2L) w(t) = tv(t) - y(x) .

Then egquation {3:17) may be written in the form

(3.25) sin @ = "F’,t) ,

and equations (3.5) lead to the system of differential equations

2
(3.26) (ai% = - 3%‘(?70(13) s j‘é% = v(t) -~ w(t) 8t %%-é;”/z) .
We introduce the functions
P 1 )
(3-21) 7 (*) = expl3 f LA @], ny(e) = expl- § [ 22LPD) gy
0 t

and we define

<ot o
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BT
13.28) wj(t) = rj(t)u(t) s, J=1,2 .

Then for both j =1 and j =2 the system (3.26) reduces to

dw

(3.29) &= - Ry(6M) 3£ =Ty
with
(3.30) Rj(t) L B—F(E"I::jm .

We use the assumption (3.20) that p = 1/7 , and we find

(3.31)

[
tA

rl(t) < 1.003 , 0 < Rl(t) < 2.12
in the interval O < t < T and
(3.32) 983 < ry(t) <1 , 0 <Ry(t) <h.552

in the interval T, <t < 1.

2

In order to simplify our calculations, we make a slight change of scale

by introducing the new independent variables

t 1
(3.33) s, = j rl(t)dt » 8, % 1l - f r2(t)dt .
6] t

i
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the system (3.29) simplifies to

In terms ¢f the new variable sj

R dw
jEL = o _l.w __2

(3.34) A I
or
(3.39) vy By

d—sj-% + N W, =0 .

Thus we bring our differential system into a form convenient for application

of the Sturm-Liouville theory.

We shall prove

IFMMA 3.6. The solution wl(sl) has at most one zero in the intervai

[0, sl(Tl)] and the solution we(sz) has at most one zero in the interval

1
[52(T2) s 15 -
1

n
Suppose there were two points sj and sj at which wj vanished in

one of these intervals. Then we would find by integration by parts the

identity
" "
sj | ) sj .
~[ w.(8,)%ds, = jr 3 2
d
: J J J 5 wj(sj) sj F2
®3 3

and thecefore by (3.31) and (3.32)




+ 4 _
.f ~57-
“ "
By -
{
; [ ‘w.j) ds‘_j
% 8 ' n
[k v < b7, w(s) =w(s)) =0 .
Y s' ’
i /‘J 5
. d
waj Sj
i s
J

Cni the other hand, it is well known from the calculus of variations that the

" 1 -
left-hand ratio is at least Tl'2(8j - Sj) : . Henze

2 n t
%5(% -sj)2<1.1 >

which is absurd. Thus wj(sj) vanishes at most once in the interval consid-
4 ered. The lemma implies, of course, that w(t) vanishes at most once in the
corresponding intervals.

We state now

LAMMA 3.7. In the interval O0<s

— = —_— 1

< sl(Tl) we have the estimate

(3.36) i (s )i < s, |vO) + |y(@)] .

{ Observe, at first, that by definitions (3.24) and (3.28) and by the

differential equations (3.3L), we have i

(3.37) w(0) = = y(0) , wi(0) = v(0) .

e e 2

i.. |
'f
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We have always assumed v(0) = Im{?az} > C and we shall now deali with the two
possibilities wl(o) >0 and wl(O) < 0 . We shall use as function of com-

parison a solution of the differential equation

‘ - ¥ LR
R €
BERE & b o

4
(3.38) —F (1.&6)2w1 =0 .

ds1 .

Lot s

We require that the sclution Wi(sl) of (3.38) have the same initial values

' for s, =0 as w.(s.) , and since by (3.31)
| 1 e

=)

2 < (1062 ,

| s

; we will have |Wi(sl)| < |wl(sl)| as long as Wl(sl) does not change its sign.

' We have clearly

W (s)) = w (0) cos(1.h6s ) + 1—1Ir6 w'l(o) sin(l.k6s)) .

3 et us start with the case wl(O) >0 . We see by direct calculation that
wl(sl) cannot vanish before the point s, = sl(Tl) « Thus we are also sure
that wl(sl) will remain non-negative in the entire interval. On the othe:

. hand, wl(sl) is always convex towards the s_-axis and hence it can be

1
estimated by the inequality

?
wl(sl) 5'wl(o) + slwl(o) 5

T, e s

which proves the lemma in this case by virtue of (3.37).
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In the case wl(o) < 0 , the solution wl(sl) will increase at first

tecause w;(o) >0 . Let s; denote the first point at which it vanishes.

We have
»
(2.39) |"1(51)|f!”(°)! » O0<s <8 .
We can write because of (3.35)
i il
1(s]) = w0 le (sp)1es, <wr(0) + 1wy [ L a
wile) 2w (0) + | oy (8y)ldey =y (0) + vy e
0 0

For sl > s;

Lemma 3.6 and is, therefore, concave. Thus

we use the fact that wl(sl) must stay positive because of

]
1
! ! R
(3.L0) wy(s)) < (s-53)w (s]) < (s,-57)w;(0) + (s,-57) |w, (O)) f ’_i ds) -
; 0

Observe that in view of the estimates (3.31) we have

o*
o [ R .
(sl-sl) j ;I»dsl <1, 0xs, < s, < sl(Tl) .

T
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Hencze the inwqualities (3.239) and (3.L0) imply the desired result (3.36).
Thus the lemma has been proved in all cases.

Since by the definition (3.33) we have the inequality
5,(t) = tr ()
we may bring (3.36) into tlLe Torm
(3.L1) |w(t)| < t|v(0)] + ¥ ()] .

We can now use formula (3.25) in order to estimate sing@ by means of (3.41) in

the entire interval [0, T1] « We find by use of Lemma 2.22 the inequality

|sing| < .03514 , 0<t=<T .

In the same interval; consequently,
| sin {-| < .0176 .

Thus |sin(®/2)| can never attain the upper limit 1/(2 p) = 1/(1L) in the
interval [0 , Tl] and hence there is no point in the interval [0 , 1/2]
where the estimate (3.20) could break down. Thus Tl = 1/2 and we have

established
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LEP'MA 3980 The eS‘bimate

(3.42) jsin £ < 20552

holds in the entire interval 0 <t < 1/2 .,

We proceed to prove

LEMMA 3.9. 1in the interval s,,(T2) <s, = 1 we have

(3.13) [wy(sp)| < Py(1)] + (1 - 8,)|wy(D)]

Using the definitions (3.24) and (3.28) we find
(3.44) w,(1) = v(1) - y(1) ,
and using the differential equations (3.3kL) we find

(3.15) w,(1) = (1) .

]
We know that v(1) = Im{(h/B)a2} > 0 , whence w2(1) >0 , and we have to

distinguish the two cases w(1l) >0 and w(l) <0 .

For w(l) <0 we use as a function of comparison the solution W2(s2)

of the differential equation

dw

__§ 5 (2.152)21;:2 =0
ds2
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which has at s, =1 the same initial velues as wz(sz) « Since by (3.32)

2

=)

2 < (2.152)%

N

we will have |W,(s,)| < |w2(82)| as long as Wz(sz) does not change its
sign. Clearly

o
w2(52) = wz(l)cos(2.152[l - 52]) - 715 sin(2.152[1 - 52]) .

But neither the sine nor the cosine here change their sign if s, > sz(Tz) >1/2 .
Hence in the interval considered w2(82) will remain negative and will be

convex from below. Thus we obtain the estimate
| (1)l '
IWZ(SZ) f Iwz\ln + (1 = sz)wz(l) ’

which proves the lemma in this particular case.

We discuss next the possibility w2(1) >0 . As s, decreases from the

value =1, the function wz(sz) will at first decrease, because w;(l) >0 .

52
Let sg

In the interval s; < 52 < 1l we have

be the first point at which L2 vanishes, if such a point exists.

A

(3.46) 0 <wy(s,) < w2(l) .

At the point s; we find by (3.35)




sz

1
R
3 2
wz(sz) w2(1) + ‘/” ;; W, ds,
E'S
s
2
and hence
1
R
' E*3 ) 2
wz(sz) < wz(l) - wz(l) ] = ds, -
e 2
%2

In case 32(T2) <5, <5
is convex and
/f*
R
1, 3., 3 ' » 3 2
= g ) = —_ "
|w2(82)| < wz(sz)(s2 32) < wz(l)(s2 s,) + w2(1)(s2 82) ‘/ F d32

S

N X

By (3.32)

R

3# 2
(Sz'sz)fr_dszfl ’
s;

and therefore we obtain the estimate

(3.L7) [wyla )] < wy(1) + wy(1)(s) = 8,)

O
.

Inequalities (3.46) and (3.47) complete the proof of Lemma 3.

In view of the inequality
1
l-szaf rzdtf(l-t)
t

and the definition (3.28), we deduce from (3.43) that
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~6li=
(983 (@ (t)] < [, (D] + (1 = &) |wy(2i
for T, <t <1. Thus by (3.25), (2.4h4) and (3.L5)
|sin @(t)| = 3.h1k{|v(1) - y(U)| + 5w
= (¥ p - qf + 2l
in this interval. But Lemma 2.21 yields the estimate
|-l§‘ P-Ql= -§-IP| = %[s| + %}?I < .0098 ,
and therefore
|sin —2t| < .0168

in the interval T, <t <1 . It follows that |sin( @ /2)] never attains

2
the upper limit 1/(2?) = 1/(1L) in the in%terval [T2 , 1] , and hence

T = 1/2 . Thus we have established

LFMMA 3.10. The cstimate

(3.48) sin £ <2032

holds in the entire interval 1/2 <t <1 .

ATwisi At
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Lemmas 3.8 and 2.10 establish that the inequality (3.13) holds throughout
the interval 0 <t <1 with f = ,0352 . From this stage forward we shall
use the functions rl(t) > Rl(t) and wl(t) in the entire interval

0 <t <1 and we therefore introduce the simplified notation

(3.h9) r=r, , R=R. , w=w, , 8=5 .

We have

LEMMA 3.11. In the interval 0 <t < 1/2

(3.50) 0 <R(%) <2.07 ,

and in the complete interval O0<t< 1

(3.51) 1< r(t) <1.002 , 0<R(t) <bL.L8 .

By means of cur revised estimate (3.42), we can sharpen (3.21) to obtain

in the interval 0 <t <1/2

F(t) > .6b5

and the bound (3.50) follows by (3.30). To establish the bounds (3.51), we
use (3.23) and (3.27) directly.

S P——
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4« The bcundary value problem.

After the preceding preliminary estimates we come now to the uniqueness
proof for the non-linear boundary value problem of Lemia 1.3.

We return to the differential system

dv \ dw _
(3.52; Tl R(t)w 3t r(t)v

Wwith the boundary conditions

(3.5 v =5%0) , w@) = x5 v(0) + 3 w(0) + f w(O)¥W(O)]

r

which we obtain from (3.8), (3.2L), (3.28), (3.29) and (3.L9).

by parts we derive the identity

By integration

t

2 Y2 )
(3.55) f miy @D at = - [v(aw(v)] | r)v@)® et ,
tl tl tl
or, with tl =0 and t2 0 B
1
3.5 [ ady GD% v+ b WO + [:2) - 1MO)w(0)
0
1
4 % r(1)u(0)v(0) > =f r(t)v(t)? at .
0




WEREST T

T i

e W P EETS
3 FHT

-67~

We have

LRMA 3.12. A non-trivial solution v(t) of the .system (3.52) can vanish at

most once in the interval 0<t<1l.
In fact, suppose that v(tl) = v(tz) =0, with 0< t, < t,<1.
Using identity (3.5k4) we find
t2 t2
f HEH? at = f e at |,
) 5

and in view of the estimates (3.51) we obtain the inequality

t2 t2
1 dv, 2 [ 2
(3.56) L8 f (d—t) dt =i 1.002 | v dt .
e 51
Using again the inequality
t t
2 2
r= . 2 [
2 2
] @tz Ty jova
t (ty = )" ¢
1 1

which holds for all continuously differentiable functions v(t) vanishing at

t, and t, , we derive from (3.56) the absurd relation

-

2
g < 1.002(t, - t1)2 <1.002 .

Thus the lemma is proved.

From the beginning we have made the normalization w(0) >0 . If v(0) = 0.
then by (3.53) we would also have v(l) = O , and therefore v(t) = 0 by

Lemma 3.12. Thus our extremal function would be given by (3.1) and there would
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be nothing more to prove. It follows that we may restrict ourselves to the

case v(0) -0 . By (3.53) this implies v(1l) > O and hence

vanish in the interval 0 <t <1, by Lemma 3.12.

S

v(t) cannot

Since v(%) decreases from v(0) to (2/3)v(0) , we conclude from the

first equation (3.52) that w(t) must be positive somewhere in the interval.

From the second equation {3.52) we deduce that w(t) increases monotonically,

and hence
(3.57) w(l) >0 .

This implies by (3.53) the inequality

(3.58) “(0) 2 - (¢ + 2yvo) .

Therefore we can replace the identity (3.55) by the inequality

1
f AR 6t (@23 + “(0))<f r(£)7(t)°
0
Using the estimate (3.51) and putting
b u(o) _ 1
(3.59) /( 3 * T 3 P o
we find
1 1
(3.60) r P—(}-‘-(gf,‘ dt + Iv(o) < 1.002 [ v(t)2 dt .
0 0

Hellarvins.it
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By Lemma 2.22, we have
- A>1.a07 ,

and this establishes

LEMMA 3.13. If v(t) $ 0, then

1

f m%-(%‘t’-’)z dt « 1.107v(0)?2
] (3.61) 2 < 1.002 .

1

fv(t)z dt

0

On the other hand, we shall now prove in an elementary way

LEMMA 3.1L. For all functions V(t) which are piece-wise continuously dif-

terenti ole and not identically zero in the interval O <t <1 and which

satisfy the boundary condition

(3.62) V(1) = % V(o) ,

we have

| (3.63) T >1.08 .

M

A
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By Lemma 3.11 we have

B

| R—(]%T:(-695)2 , 0<t<1/2 ,

R_(1,5)»(.1;72)2 , 1/2<t=<1 ,

and therefore it suffices to calculate
1/2 1
T ]
1 f (.695)%v' ()2 at + f C472) ' (£)2 at + 1.107v(0)2

. (3.6L) K2 = min —2 11/2

fV(t)Z dt

= 0

and to show that k2 > 1.08 . From the elements of the calculus of variations,
we obtain the following characterization for the extremal function V(t)

which yields the minimum in (3.6L4). We have for V(t) the differential

eguations

(3.65) V"+—k—7v=o , D<t<

(NTE

(3.66) v ?——-TVSO e

-4
-
LV o

the saltus conditions

* (367 (639 (F-0) = (L' G0 , VG-0 =G +0),
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and the natural boundary condition
2, 2. 2t -
(3.68) 3-(..;72) V (1) = (.695)°V (0) - 1.107v(C) ,

together, of course; with the side condition (3.62), which is presupposed

all the time.
We deduce from the differential equations (3.65) and (3.66) that

o
A
ot
A
rofi=
L)

v(t) = C.l cos .—ég(t - %-) * 76]§-5 Dl sin ..%k?.s(t = %.) 5 <
V(t) = C, cos .7}(7'5“ - %) + :13'—771)2 sin ,15{72'“ - %) ,

The saltus conditions (3.67) lead to the equations

On the other hand, the boundary conditions (3.62) and (3.68) yield the system

of linear equations

.k 1 K .2 ok _ 1 .k
cl o i v Dl sin n 3[01 cos 5 :3§§-D1 sin 1.39]

2 k2 k. k k
3(.1472)011( sin m + 3 le coa .—9-m 01[56951( sin m 1.107 cos 1—059_]

¥ 1.107 k
+ D].[k CcoSs T.—B— + -m sin “1‘35' .

A3
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This is a homogeneous system of linear equations which has non-trivial solu-

tions only if its determinant
(3.69) A=-.lik+ [lgkwf-g%gki‘—.—zé;—zk] cos §l—pg + )
8- 288 k- R k] cos Kz - o)
+ 1°1°7[%(T€%§'* :ﬁ%g)] sin %(7£%§ + 7555)
+ 1°1O7[%(T£§§ = :ﬁ%g)] sin g(Tg%g - Tg?f)

vanishes. Thus we obtain for k the transcendental relation

(3.70) 1 = 1.20703 cos{1.77875k) - .12369kL cos{.339897k)

. 14768 Sin(1.77875K) 585, sin(.339897k)
° S L] k

.

The cquation (3.70) has no roots in the interval O < k < 1.0L , whence

2 > 1,0k and the lemma is proved.

The inequalities (3.61) and (3.63) are contradictory, and therzfore we

obtain

LEMA 3.15. There does not exist a solution of the boundary value problem

(3.4)-{3.8) whose initial values satisfy the esvimates of Lemmas 2.2) and

2.22, except for the solution with the exact initial values

(3.71) w©0) =k , w(0) =0 , x(0) =3 , y(©) =0 .
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5. Conclusion.

Lemma 3.15 completes our proof of the inequality lahl <L. ‘Since our
derivation of the principal Lemmas 2.22 and 3.15 turned out to involve a
multitude of laborious calcuvlations, it would seem appropriate to discuss
from a broader point of view the main fea‘ures of our method and to suggest
alternative procedures which could have been used.

As we mencioned in Chapter II, it is not actuwally necessary to introduce
‘verms involving a? in the preliminary estimation of 32 and 33 s for the
terms based on a5 and ag vield sufficiently refined bounds for the unique-
ness proof of this chapter. To be precise, if we carried through all the
arguments of this chapter with the same basic formulas, but used everywhere
numerical bounds derived from Lemma 2.17 rather than from lemma 2.20, we
would be led to a contradiction which would again establish Lemma 3.15. The
chief difference in the proof would be that the new bounds appearing in
Lemmas 3.13 and 3.1k would be much closer. Also, the value pi= 1/7 would
turn out to be barely large enough for the success of our estimates in
Section 3. The presence of more refined, and therefore more cocnvincing,
bourds is not, however, so much the motive for exploiiing terms in a8, as is
a deeper understanding of our method and of its applicability to further
ccefficient problems.

In the opposite direction, we could have worked out preliminary bounds
based on ag and on higher coefficients; and with the improved estimates
thus ottained our study of the non-linear boundary value problem of Lemma i.3

would not have required such care. On the other hand, we could emphasize less

At
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the method of Chapter II and refine instead the uniqueness proof in this
chapter. Such a refinement could be obtained by subdividing the interval
0<t<1l into more than two subintervals. This improvement amounts to a
mere exzct numerical integration of Liie Jdifferential squations (1.10) and
provides a routine tool suitable for more difficult protlems.

We have found no way to avoid altogether the estimation procedure of
Chapter II. However, loewner's formulas could be side-stepped by expressing
the equations for ag and 33 near the point a, L a3 = 3 in terms of

the periods of hyperelliptic integrals. This is done by separating variables

in the differentisl equation (1.5), integrating, and writing down the con-

to correspond under the conformal mapping by the extremal function. We have
already mentioned this alternative when we studied another coefficient problem
[5). We find our present approach more appealing because of its connection

with non-linear differential eguations.

We should remark that the inequality (1.23) is also equivalenrt to the above

equations for a, and a2, if all the terms are retained and all the coef-

ficients b2v -y are expressed in terms of 85 s a3 and a) - This ejquiva-~
lence follows because boundedness of the coefficients b2v -1 implies
convergence of the solution of the differential equation (1.7) in the entire
interior of the unit cirecle. It is this insight which leads us to persevere
in the tedious calculations of Chapter IT.

Finally, we are hopeful that the general method of our proof will find

application to a wide variety of the more difficult extremal problems for
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schlicht functions which have thus far defied analysis. However, we must
resist the temptation to spend a lifetime working out a wealth of examples,

each with its own special twistl
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